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I. INTRODUCTION

Contributions to vehicular traffic theory are mainly put forward along to
different lines. The macroscopic approach(1-31) comprises continuum models
where, in analogy to hydrodynamics, one investigates the dynamics of

1 Siemens AG, Corporate Technology, Information and Communications ZT IK 4, 81730
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We solve numerically the integrodifferential equation for the equilibrium case
of Paveri-Fontana's Boltzmann-like traffic equation. Beside space and actual
velocity, Paveri-Fontana used an additional phase space variable, the desired
velocity, to distinguish between the various driver characters. We refine his
kinetic equation by introducing a modified cross section in order to incorporate
finite vehicle length. We then calculate from the equilibrium solution the mean-
velocity-density relation and investigate its dependence on the imposed desired
velocity distribution. A further modification is made by modeling the interaction
as an imperfect showing-down process. We find that the velocity cumulants of
the stationary homogeneous solution essentially only depend on the first two
cumulants, but not on the exact shape of the imposed desired velocity distribu-
tion. The equilibrium solution can therefore be approximated by a bivariate
Gaussian distribution which is in agreement with empirical velocity distribu-
tions. From the improved kinetic equation we then derive a macroscopic model
by neglecting third and higher order cumulants. The equilibrium solution of the
macroscopic model is compared with the cumulants of the kinetic equilibrium
solution and shows good agreement, thus justifying the closure assumption.
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averaged quantities like density, mean velocity and traffic flow. In the micro-
scopic approach every vehicle is treated separately. Here, car-following
models,(4,5) describing the dynamics of each individual car by differential-
difference equations, and particle hopping models,(6 8) where space and
time are discretized as a cellular-automata (CA), are quite popular. A third,
and somewhat intermediate approach to traffic dynamics is the kinetic
modeling,(9) where vehicles are treated similar to particles in gas kinetic
theory. Recently, several articles(3,10) have been published dealing with the
derivation of macroscopic traffic equations on the basis of a Boltzmann-
like kinetic equation due to Paveri-Fontana(11) (PF). Paveri-Fontana
modified Prigogine and Herman's(9) original approach to kinetic traffic
modeling by the introduction of an additional phase space variable, the so-
called "desired" velocity. In order to proceed to a macroscopic model one
has to take moments of the kinetic equation. Usually the thus obtained
hierarchy of moment equations is closed by approximating the local equi-
librium solution of the kinetic equation with a normal distribution. The
latter argument is based on empirical data and on the resemblance of the
kinetic equation to the classical Boltzmann equation, but the equilibrium
solution has not been investigated so far. Paveri-Fontana closed his
article(11) with the remark "...that is does not seem possible to solve analyti-
cally... [the stationary and homogeneous problem], ...even for the simplest
choices... [of the desired velocity distribution]. The development of compu-
tational schemes appears to be mandatory." Since the stationary homoge-
neous case plays as closure assumption a major role in the derivation of
macroscopic models from a kinetic equation, we pick up Paveri-Fontana's
thread in the present paper and investigate this problem numerically.
Furthermore, we study modified versions of the PF collision operator
which are introduced to overcome some of the main deficiencies of the
original kinetic traffic equation. In the equilibrium case the improved
kinetic equation yields fundamental diagrams and vehicle-velocity distribu-
tions comparable to traffic data. Based on this improved kinetic equation
we derive a macroscopic model which yields realistic results over the whole
density regime.

The paper is organized as follows: In Section II we briefly recapitulate
Paveri-Fontana's kinetic traffic equation. We then investigate the time and
space independent problem (Section III). Improvements on the kinetic
equation are introduced and thoroughly investigated in Section IV for the
stationary homogeneous case. The results are compared to traffic data and
are related to other approaches. Based on the modified kinetic equation we
derive a macroscopic model in Section V and compare the stationary
homogeneous case with the corresponding results gained from the
improved kinetic equation.
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The road is assumed to be a one dimensional, unidirectional lane, but pass-
ing is allowed. This can be conceived as a multi-lane road where an average
over the different lanes has been taken. The term on the RHS of Eq. (2.1)
represents the interactions due to "collisions," i.e., the slowing down pro-
cess, where the following assumptions have been made:

(i) The slowing down process has a probability (1 — P), where P
denotes the probability of passing, 0<P < 1. If the fast car passes the slow
one, its velocity is not affected.

(ii) The velocity of the slow car is unaffected by the interaction or
by the fact of being passed.

(iii) Cars are regarded as point-like objects, so the vehicle length can
be neglected.

(iv) When two vehicles interact the fast car instantaneously adopts
the velocity of its leading slower car, there is no braking time.

(v) Only two-vehicle-interactions are to be considered, multi-vehicle
interactions are excluded.

Here, g(x, v, w, t) denotes the one-vehicle distribution function for vehicles
with desired speed w and actual speed v on the phase space spanned by
x, v, w, t, with g(x, v , w , t ) dx dv dw being the number of vehicles at time t,
in position dx around x and actual speed dv around v with desired speed
dw around w. The one vehicle speed distribution function f(x, v, t) is
defined as:

II. PAVERI-FONTANA'S EQUATION

Paveri-Fonata(11) proposed the following Boltzmann-like traffic
equation:
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(vi) One assumes "vehicular chaos," i.e., vehicles are not correlated,

where g2 denotes the two-vehicle distribution function.

The first part of the collision integral of Eq. (2.1) describes the gain of
the phase space element, i.e., vehicles with velocity v' > v collide with
vehicles with velocity v, while the second term describes the loss of the
phase space element, i.e., vehicles with velocity v collide with vehicles with
even slower velocity v'. Furthermore, it is assumed that no driver changes
his desired speed, i.e.,

and that the acceleration of each car is modeled by

i.e., the drivers approach their desired speed exponentially in time, with
time constant T. (T might be a function of c, v, see for example ref. 12).
Since no driver can achieve a velocity v greater than his desired velocity w,
g(x, v, w, t) is restricted to g(x, v, w, t) ^ 0 for 0 < v< w. Each driver
determines the acceleration of the vehicle by its individual desired speed, so
Eq. (2.4) can be understood as an acceleration due to an internal force. In
this sense we call the phase space variable w an additional (internal) degree
of freedom, but now a desired velocity distribution has to be given. Since
it seems impossible to measure the desired velocity distribution, one has to
make appropriate assumption, for example a Gaussian distribution. On the
other hand, it is obvious that imposed speed limits will have a major
influence on at least the first two cumulants of the desired velocity distribu-
tion. Notice also that owing to the form of the interaction term, no vehicle
can achieve a velocity less than the smallest desired velocity. This is one of
the short-comes of Paveri-Fontana's equation. Another problem is, that
with assuming "vehicular chaos" we neglect correlations between the
vehicles, and therefore the kinetic equation is only valid for dilute traffic.
Both of these restrictions will lead to modified versions of the traffic
Eq. (2.1).

The vehicular concentration c(x, t), the average velocity v(x, t), the
average desired velocity w(x, t) and the flow q(x, t) are defined as



With Eq. (2.6), it immediately follows that

The probability of passing is usually chosen to be density dependent,
and in the following we will use Prigogine and Herman's suggestion,(9) i.e.,
P(c) = 1 — c / c (c denotes the maximal density). Additional velocity and
variance dependence can certainly be conceived (see ref. 12).

Regarding Paveri-Fontana's traffic equation as a nonlinear initial-
value problem the existence and uniqueness has been proven in ref. 13.
Based on this proof an iterative method was given by Semenzato(14) to find
as solution of the time dependent problem as the limit of two sequences of
solutions of linear equations. Therefore a unique solution exists also for the
time- and position independent problem and we first turn our attention to
this case. In order to solve this equation numerically we follow a direction
already pointed out by Paveri-Fontana. It relies on the assumption that
the density c and the normalized desired distribution function H(w) are
known. Another possible approach is based on a known current q and a
known desired flux <p(w) = \£x' dv vg(v, w).

III. THE STATIONARY HOMOGENEOUS CASE

Let us rewrite the stationary homogeneous version of Eq. (2.1) in a
normalized form and therefore introduce functions H, G defined by
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Fig. 1. Conditional velocity distribution G ( v \ w ) for vehicle with desired velocity if
at c = 0.3c.

is the wanted solution.

where a. = cT(1 — P). In Eq. (3.4) G(v w) is the unknown, whereas a and
H are given with H ( w ) > 0 for w>0 and H(w) = 0 otherwise. The non-
linear integro-differential equation (3.4) has to be solved for 0<v<w and
subject to the requirement G(v | w) ^0.

In the collision-less case (a = 0), it is quite clear that

In terms of the normalized functions H, G the stationary homogeneous
equations now reads

H(w) is the normalized desired velocity distribution and G(v | w) is the con-
ditional distribution for vehicles with desired velocity w. The normalized
velocity distribution F(v) is then given by
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In order to investigate Eq. (3.4) numerically, we regard the integro-
differential equation as a balance equation in the (v, w)-velocity space. We
discretize Eq. (3.4) such that the vehicle number is conserved automatically
and optimize an initial distribution G0(u, w) by minimizing the transition
rates between the "velocity cells" calculated from Eq. (3.4), subject to
G(u |w)>0 .

As a first set up we take P(c) — 1 — c/c, where c is the maximal density
and T= 10s. As desired velocity distribution H(w) we choose a Gaussian
with w = 30m/s and ©ww = 86.84 m2/s2 and H(w) = 0 for w£[0m/s,
60 m/s]. In Figs. 1, 2, 3, and 4 the normalized distribution G ( v | w ) and the
weighted distribution G ( v | w ) H ( w ) are shown for c = 0.3c and c = 0.6c,
respectively. As already mentioned, the PF-equation only holds for dilute
traffic, so the case c = 0.6c just serves to state the qualitative changes when
proceeding to higher densities. One finds that the distribution G separates
into two parts, one part is the "free" vehicles depicted by the delta-peak-
like function on the diagonal, whereas the more spread out distribution in
the high velocity regime represents the interacting cars.2 This is intuitively
quite clear, since the vehicles with small desired velocity can only collide
with vehicles with even smaller actual velocity, therefore their interaction
frequency is very low and they are thus able to drive almost with their
desired velocity (confer the collision-less case Eq. (3.5)). On the other
hand, for vehicles with a high desired velocity the interaction frequency is

2 This reminds us to kinetic traffic equations, where free and queuing vehicles are treated
separately from the very beginning, see for example ref. 15.

Fig. 2. Weighted distribution G(v | w) H(w) for c = 0.3c. H(w) is a Gaussian with mean value
iv = 30 m/s and variance 0ww = 86.84 m2/s2.
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higher and these vehicles are "scattered away" from their desired velocity
to lower velocities. CA-models(6-8) show that the vehicles accumulate as
free and congested traffic, but these different states are separated in space
as stop-and-go waves. From a mathematical point of view, we here
investigate the homogeneous case of a kinetic equation, so on a coarse
grained scale the separation takes also place locally (remember that we are

Fig. 4. Weighted distribution G ( v | w ) H(w) for c = 0.6<?. H(w) is a Gaussian with mean value
w — 30 m/s and variance (9ww = 86.84 m2/s2.

Fig. 3. Conditional velocity distribution G(v \ w) for vehicle with desired velocity w
at c = 0.6c.



dealing with a quasi-one-dimensional model where an average over the
lanes has already been taken.). As we expect, the relative number of inter-
acting cars (free cars) increases (decreases) at higher densities. Since the
PF-equations is only valid for dilute traffic we can not hope to get
meaningful results when calculating the means velocity as a function of the
density. We just remark that v(c) is a strictly monotonously decreasing
function, but that the mean actual velocity does not go to zero for c -> c.

IV. MODIFIED KINETIC TRAFFIC EQUATIONS

A. Enskog-like Model

In order to find a model yielding more realistic results over the whole
density regime we now follow an argument used by Enskog(16, 17) when he
introduced his theory of dense gases.3 At medium and high densities the
vehicles cannot be regarded as point-like objects any more, but have a
spatial extension / (average vehicle length). This leads to two different
modifications in the Boltzmann-like equation:

(i) The common position x of the two interacting vehicles in the
collision integral [RHS(2.1)] should be replaced by the actual positions of
the centers of the two vehicles and the "cross section" should be taken at
the actual position of the collision.

(ii) Since the covolume of the cars is now comparable to the total
volume of the system, the volume where the center of any vehicle can lie
is reduced and therefore the collision frequency is enhanced.

Since we study only the homogeneous case we just have to consider the
second effect. The effective volume is reduced by a factor (1 — c/c), hence the
scattering frequency is increased by a factor X = (1 — c/c)"'. We then get an
Enskog-like stationary homogeneous equation by replacing (1 — P(c)) in
Eq. (3.4) through the modified cross section4 a(c) =X(c)( 1 — P(c)). We now
investigate the behavior of the modified equilibrium equation and its solution
with respect to the width of the desired distribution function. Again we have
chosen P(c) = 1 —c/c. As desired velocity distribution H(w) we use three
Gaussian with equal mean values but different variances (0~H. = 86.84 m2/s2,

3 Enskog's considerations are heuristic, for a more thoroughly based model, see ref. 18.
Nelson(19) proposed a correlation model for a kinetic traffic equation.

4 Through this modified cross section n, we replace the "vehicular chaos" assumption in
Section II through the Ansatz g2=xg>Si- Since the two-vehicle correlation function #2 is
defined by g2= g1g1 +B2, the introduction of the modified cross section is equivalent to the
assumption b2 = (X- 1) g1g1 = g 1 g 1 / ( f / c - 1).
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Fig. 5. Fundamental diagram for Qww = 86.84m2/s2, Qmw = 10ww and 0ww = 10ww.

<9ww = 1vww, #ww = 1eww) and H(w) = 0 for w e [0 m/s, 60 m/s]. Figure 5
shows the mean velocity-density relation and Fig. 6 shows the variance of
the actual velocity as a function of the density. Both graphs go to zero for
c -> c, so at least the minimal requirement is satisfied. Next we find that for
broader desired velocity distributions the fundamental diagram declines
faster. Going from a low to a high desired velocity variance the mean
velocity changes from a concave to a convex function of the density.

Fig. 6. Velocity variance as a function of density for ©ww. = 86.84 m2/s2, 0mw =1®ww, and
0-;.= i6»-,..
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Fig. 7. Velocity distribution F(v) at different densities: &ww = 86.84m2/s2, 0ww =10ww.
(normal desired velocity distribution)

Figure 7 depicts the velocity distribution F(v) for different densities. The
obtained Gaussian shaped distributions are in agreement with empirical
data.(3,20,21) In Fig. 8 empirical velocity distributions are compared to
normal velocity distributions with the same mean value and variance. The
critical reader who objects that this Gaussian shape might just be a result
of the imposed normal desired distribution H(w) is referred to the next
section.

Fig. 8. Comparison of empirical velocity distributions at different densities (—) with
Gaussian velocity distributions with the same mean value and variance ( ).(23)
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where a' = cTa = cTX(c)(1 — P(c)) and x[a,b] is the characteristic function
of the interval [a, b]. 1 / [ v 1 ( 1 — /?)] is a normalization factor.

5 Wegener and Klar(23) used a similar interaction to model the slowing down process in their
kinetic traffic equation.

B. Imperfect Velocity Adaptation

In the idealized slowing down process modeled by the collision
integral of Eq. (2.1), the fast vehicle instantaneously adopts the velocity of
its leading vehicle. A short glance at Eq. (2.1) immediately shows that no
vehicle can reach a velocity slower than the smallest desired velocity. In
the former numerical experiment H(w) was small but non-vanishing for
small w, though it seems unrealistic to have drivers with such small and
even zero desired velocities. Drivers, who are forced to slow down often
over-react, so a more realistic interaction models should allow that the fast
car also slows down to velocities smaller than the velocity of its leading
vehicle. Heibing(31) for example, assumes that fast vehicles are scattered to
velocities smaller than the leading-car velocity with exponentially decreas-
ing probability and he calls this "imperfect driving." A similar effect has
been introduced in the CA-model by Nagel and Schreckenberg(6) through
a random deceleration step. Here, we allow fast vehicles to slow down to
velocities v e [ fiv', v'] with uniform probability (v1 is the velocity of the
leading vehicle and 0 < / ? < 1 constant).5 This simpler model possesses
already the important features and suffices our purposes. The modified
collision integral [RHS(3.4)J takes now the following form:
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Fig. 9. (a) G ( v | w ) normalized velocity distribution for vehicle with desired velocity if at
c = OAc and /? = 0.8. H(w) is a Gaussian with H(w) = 0 for n>£[20m/s, 50 m/s], w = 35m/s
and 0 = 25.8 m2/s2. (b) Weighted distribution G(v\w)H(w) for c = 0.4c and /? = 0.8.
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Fig. 11. Flux cv as a function of density: /I = 0.9 (- -), /i = 08 ( - . ) , /? = 0.7 ( • . - ) ,
fi = 0.3 ( - ) .

Fig. 10. Mean-velocity-density relation for different values of the parameter /?./?= 1.0 upper
solid line, jff = 0.9 ( - - ) , /? = 0.8 ( - . ) , / ? = 0.7 ( . . . ) , yS = 0.3 lower solid line.

In Figs. 9(a) and (b) we plot the normalized velocity distribution
G(v w) for vehicles with desired velocity w and the weighted distribution
function G(v w) H(w), respectively, at c = 0.4c and with /? = 0.8. H(w) is a
Gaussian with H(w) = 0 for w<£[20m/s , 50m/s], vv = 35m/s and ©ww =
25.8 m2/s2. A rough comparison with Figs. 1-4 shows that the clear separa-
tion between free and interacting vehicles has almost disappeared. Besides,
the weighted distribution G ( v \ w ) H(w) seems to be well approximated by
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Fig. 12. Velocity-variance as a function of density: /?= 1.0 lower solid line, /I = 0.9 ( ),
fS = 0.8 (-.), 0 = 0.7 (...), /? = 0.3 upper solid line.

a bivariate Gaussian. Figure 10 shows the fundamental diagram for fixed
desired velocity distribution (H(w) is a Gaussian with w = 35 m/s and
//(w) = 0 for w $ [20 m/s, 50 m/s]), but different values of the parameter ft.
The case /?= 1.0, i.e., "perfect braking," is shown for reference. Wegener
and Klar(22) chose /? = 0.3 in their model. Although this seems to us to be
very low, we also investigate this case to keep in contact with their work.

Fig. 13. 0v v/v2 as a function of density: /J=1.0 lower solid line, /? = 0.9 ( ), )S = 0.8 (-.),
£ = 0.7 ( . . . ) , £ = 0.3 upper solid line.



Fig. 14. Velocity distribution F(v) at c = 0.5c: /i = 1.0 right solid line, /? = 0.9 ( ), /? = 0.8
(-•), ^ = 0.7 {...), P = 0.3 left solid line.

As main result we find that now v -> 0 for c-*c, although the lowest
desired speed w0 ;*> 0. The fundamental diagram declines faster for smaller
values of ft. Figure 11 depicts the flux q = cv as a function of the density.
If we take a look at the variance as a function of density (Fig. 12), we find
a plateau for /? = 0.8 and /? = 0.9, whereas for ft = 0.7 and ft = 0.3 the
variance is even increasing. This reflect the fact that vehicles can now be
scattered to velocities smaller than the minimal desired velocity, thus
broadening the velocity distribution. In Fig. 13 we show the variance
relative to the squared mean velocity as a function of density and in Fig. 14
we show the velocity distribution F(v) at c = 0.5c for different values of ft.
For ft = 0.3 the velocity distribution shows a significant skewness, which
seems not be supported by data.(23)

Now we go on to investigate the influence of the shape of the desired
velocity distribution on the solution. We choose /? = 0.9 and a uniform
desired velocity distribution with the same mean value and variance as the
Gaussian in the former case. The surprising result is that the exact shape
of the desired velocity distribution has not much effect on the mean-
velocity-density relation (Fig. 15) and on the variance as a function of the
density (Fig. 16). The covariances as functions of the density are almost
identical in both cases (Fig. 16). Furthermore, we find that the velocity
distribution F(v) is Gaussian shaped for medium and high densities, i.e.,
the Gaussian shape of the equilibrium velocity distribution is not just a
consequence of the imposed desired velocity distribution, but an inherent
property of the improved kinetic equation. This is certainly a consequence
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Fig. 15. Mean-velocity-density relation with vv = 35m/s and &ww = 25.8 m2/s2: Gaussian
desired velocity distribution ( — ), uniform desired velocity distribution (- -).

of the randomness introduced through the vehicular chaos assumption and
the imperfect velocity adaptation, but it leads to velocity distributions
known from traffic measurements. In CA-models and car-following models
one finds in the stationary state a bimodal velocity distribution since the
vehicles tend to accumulate at the highest and the lowest possible velocity

Fig. 16. Velocity-variance as a function of density with vf = 35m/s and 0ww = 25.8 m2/s2:
Gaussian desired velocity distribution (-), uniform desired velocity distribution (- -).
Covariance as a function of density: Gaussian desired velocity distribution (-), uniform
desired velocity distribution (*).



As in ref. 10 we derive now a macroscopic model by taking the moments
of Eq. (5.1). For brevity the time and space arguments of the distribution
functions are omitted. An integration over J dv { dw vkwl of the left-hand

Fig. 17. Velocity distribution F(v) at different densities, w = 35 m/s, 0m = 25.8 m2/s2

(uniform desired velocity distribution).

(stop-and-go waves). The reason for this is the use of single lane models
with periodic boundary conditions. Only recently, multilane and multi-
species microscopic models have been suggested,(24,25) but so far the
velocity distributions for open boundary conditions and different driving
behavior have not been investigated. Having found an interaction model
which yields realistic results in the stationary homogeneous case over the
whole density regime, we now turn to the macroscopic model.

V. MACROSCOPIC MODEL

The whole improved kinetic equation now reads
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convective part of Eq. (5.1) leads after integration by parts and vanishing
surface terms to (see also refs. 10 and 11)

mk , = \dv\dw vwg denotes the k, /th moment, with m_1,1 := 0. The
integration over the right-hand side of Eq. (5.1), i.e., the collision operator,
yields

with

In order to evaluate integrals in Eq. (5.3) we make use of a cumulant
expansion of the distribution functions g and / We then neglect third and
higher order cumulants. This is equivalent to a Gaussian approximation of
the distribution functions and is justified by the result of Section III. For
the velocity equation, i.e., the case k = 1 and / = 0, the derivation is briefly
demonstrated in the Appendix (see also ref. 10 for a more detailed descrip-
tion). The higher order cumulant equations are obtained similarly and we
eventually find the macroscopic equations
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For /? = 0, i.e., "perfect braking," follows that / u t = l , V&, and Eqs.
(5.4)-(5.9) reduce to the basic model derive in ref. 10.

A. The Time-Independent Homogeneous Equations

In the stationary homogeneous case Eqs. (5.4)-(5.9) reduce to



Fig. 19. Variance-density relation: Kinetic equilibrium solution (solid line), macroscopic
equilibrium solution (dashed line).
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Fig. 18. Mean-velocity-density relation: Kinetic equilibrium solution (solid line), macro-
scopic equilibrium solution (dashed line).

First, let us investigate the behavior near the maximal density c. For c -»c,
we obtain from Eq. (5.12) v& v w ~£(X - 1 ) and <9ww y<9ww ff ( x - 1 ) . Equa-
tion (5.10) yields 6ww~ O(X-1) and v ^ /0 w w ~0(x - 1 ) , thus y~£(X - 1 / 2 )
and &vw ~ £(X - 1 / 2 ) . This means that the mean velocity and the variance both
go to zero when the density approaches the maximal density. Unfortunately,
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Fig. 20, Covariance-density relation: Kinetic equilibrium solution (solid line), macroscopic
equilibrium solution (dashed line).

Eqs. (5.10)-(5.12) can only be solve numerically for given values of c, w,
0WW and /?. When we compare the solutions of the macroscopic equilibrium
Eqs. (5.10)-(5.12) with averaged values obtained from the kinetic equi-
librium equation [LHS(3.4) = RHS(4.1], we find a good agreement of the
mean velocity-density relation (Fig. 18). The variances (Figs. 19 and 20)
differ a bit more, but apparently this has not much impact on the v — c-
relation. We conclude that a bivariate Gaussian distribution is a good
approximation of the local equilibrium solution of the kinetic traffic
Eq. (5.1).

VI. CONCLUSIONS

In the derivation of macroscopic traffic models from a kinetic equation
the stationary homogeneous case plays a crucial role as closure assumption
when truncating the hierarchy of moment equations. Results from traffic
measurements suggest a normal velocity distribution, but the stationary
homogeneous problem itself has not been thouroughly investigated so far.
The present paper serves to close this gap. We solved numerically Paveri-
Fontana's kinetic traffic equation for the equilibrium case and find that the
solution shows a separation of free and interacting vehicles. Since we work
with a quasi-one-dimensional kinetic equation this separation holds locally
on a coarse grained scale. We then introduce modifications to the kinetic



equation to remedy the main deficiencies of Paveri-Fontana's original ver-
sion. We find that the equilibrium solution of the improved kinetic equa-
tion can be approximated very well by a bivariate Gaussian distribution.
Furthermore, the velocity distribution turns out to have a Gaussian shape,
which is not just a consequence of the imposed desired velocity distribu-
tion, but an inherent property of the improved kinetic equation. Thus the
equilibrium velocity distribution is in agreement with empirical data.
Nevertheless, the vehicular chaos assumption remains somewhat unsatis-
factory, since in vehicular traffic correlations between interacting vehicles
should play a more important role than in the classical interaction process.
So, two-vehicle distribution functions and correlations remain important
issues to be investigated within traffic theory. From the improved kinetic
equation we derive a macroscopic model. The macroscopic equilibrium
solution shows very good agreement with the calculated cumulants of the
kinetic equilibrium solution, which justifies the closure assumption. We
thus have found a macroscopic model based on a microscopic considera-
tions which yields realistic results over the whole density regime. A com-
parison of the v — p relation of Fig. 18 with mean-velocity-density relations
extracted from empirical data show that the latter decline much faster. It
is now rather tempting to remedy this defect by choosing a small value for
the parameter y? (see Fig. 10), but this has then to be interpreted as a very
strong over-reaction of the drivers. More appropriate seems to be a variation
of the cross section a (see Section IV A). A modified passing probability
P(c)= 1 — ( c / c ) " with 0«x<l, or a mean velocity dependent correction
factor x due to a safety distance (see ref, 10) would also lead to faster
decreasing v — p relation. In Section IV B we only considered the stationary
homogeneous effect of a finite vehicle length in form of a modified cross
section. In the dynamical case we also have to consider the different posi-
tion of the collision partners. This can be approximated by a Taylor expan-
sion in space of the distribution function and has been carried out in ref. 10
for the case of perfect velocity adaptation. Imperfect velocity adaptation
can be treated similarly and only yields higher order corrections to the the
Taylor expansion, so for the improved macroscopic model we can use the
additional gradient terms derived in ref. 10 to consider the dynamical effect
of a finite vehicle length.

APPENDIX: DERIVATION OF THE RHS OF THE VELOCITY
EQUATION

For & = 1 and 1 = 0, the first term of Eq. (5.3) can be written as (we
omit the factors <r,/*1, and time and position dependence):
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From the first line to the second line we have used the Fourier transform
of the step-function. From the third to the fourth line, a cumulant expan-
sion of/(y,) andf(v) was used omitting third and higher oder cumulants.

The second term is treated similarly and we find

The remaining integrals can easily be evaluated by using methods of com-
plex function theory. This yields
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